Quasiconvex functions can be approximated by quasiconvex polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiconvex functions and Hessian equations

In this note we construct new examples of quasiconvex functions defined on the set Sn×n of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1, 2, ..., n. The idea is motivated by Šverák’s paper [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently, see [CNS], [T], [...

متن کامل

Jensen’s Inequality for Quasiconvex Functions

This class of functions strictly contains the class of convex functions defined on a convex set in a real linear space. See [8] and citations therein for an overview of this issue. Some recent studies have shown that quasiconvex functions have quite close resemblances to convex functions – see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex functions...

متن کامل

Quasiconvex Functions and Nonlinear Pdes

A second order characterization of functions which have convex level sets (quasiconvex functions) results in the operator L0(Du,Du) = min{v ·D2u vT | |v| = 1, |v ·Du| = 0}. In two dimensions this is the mean curvature operator, and in any dimension L0(Du,Du)/|Du| is the first principal curvature of the surface S = u−1(c). Our main results include a comparison principle for L0(Du,Du) = g when g ...

متن کامل

Hadamard-type Inequalities for Quasiconvex Functions

Recently Hadamard-type inequalities for nonnegative, evenly quasiconvex functions which attain their minimum have been established. We show that these inequalities remain valid for the larger class containing all nonnegative quasiconvex functions, and show equality of the corresponding Hadamard constants in case of a symmetric domain.

متن کامل

Quasiconvex Programming

We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2008

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv:2008010